Problem Set 12 — Statistical Physics B

Problem 1: The Langevin equation and the Einstein relation
Consider the Langevin equation for one-dimensional Brownian motion

dv dx
me = —Gu(t) + €0, G = ()
with m the mass of the Brownian particle and ¢ the friction constant. Here, the noise £(t) is a
stochastic process with zero mean (£(¢)) = 0, and

(E@0E)) =To(t — 1)),

with ' a constant. Here (...) is defined as the average over a subensemble with the same initial
velocity vg = v(0) but a different realisation of the noise. Since £(t) is a stochastic process, the
Langevin equation makes x(t) also a stochastic process whose stochastic properties follow from

£(t).

(a) We only specified the first two moments of the noise which suffices for this exercise. In
general, we assume that £(¢) denotes Gaussian white noise. What does this condition

imply for (£(£1)€(t2)€(t3)€(t4))?

(b) Determine explicitly v(t) for given vg. What is (v(¢))? Conclude from your expression
why the Brownian particle is out of equilibrium.

(¢) Determine the correlation function (v(t)v(t')). What is the expression for the equal-time
correlator?

(d) The limit limy o (v%(t)) is well defined. What is the corresponding value? From it,
determine the constant I and relate your result to the fluctuation-dissipation theorem.

(e) Determine z(t) — 2(0) and from it compute the value of the mean-squared displacement
([z(t) — 2(0)).

(f) Show that the particle for small enough times undergoes ballistic movement, whereas for
long times the motion is diffusive. What is the relation between the diffusion constant
D and (7?7 This is called the Einstein relation. What would the result be in three spatial
dimensions?

(g) Determine the correlators (v(¢)£(t)) and (x(t)&(t)).

Problem 2: Driven damped harmonic oscillator
Consider the equation of motion of a damped harmonic oscillator in the presence of a driving
force f(t),
mi(t) +v2(t) + mwiz(t) = f(t),

with m the mass, v the friction constant, and wy the (undamped) angular frequency of the
oscillator.

(a) The equilibrium position is given for x = 0, which allows us to define the response function
as
o0
x(t) = / dt’ x(t — ') f(t)).
—0o0

Compute y(w). How big is the error here within the linear-response approximation?



(b) Determine Y'(w) and x”(w). What symmetry properties are satisfied by x/(w) and x”(w)?
Plot these functions in the underdamped and overdamped regime for representative values
of the parameters. What happens for v — 07

(c) Consider the analytical continuation x(z). From its pole structure, show that x(¢) satisfies
causality both in the underdamped and the overdamped regime.

(d) Determine x(¢) and sketch this function for representative parameter values.

(e) Consider harmonic driving, f(t) = focos(Qt). Computed P(t), the dissipated power aver-
aged over a full cycle, and show that only ¥”(w) contributes.

(f) Show that the explicit forms of ¥'(w) and Y”(w) found in (b) satisfy the Kramers-Kronig
relations.

Problem 3: Spinodal decomposition
Consider the Flory-type free energy

Ba’Flg] = /dr {KIV(r) + ¢(r) In(r) + [1 — ¢(r)] In[1 — &(r)] + x(r)[1 — ¢(r)]} .

with @ an (irrelevant) length scale parameter, x a stiffness parameter, ¢(r) a local volume
fraction, and x an energetic parameter. It would be useful to have a look at problem set 5
before doing this exercise.

(a) Explain in words how you would derive such a free energy from first principles and what
kind of approximations you need to employ.

(b) Determine within this model an expression for the growth factor R(q) for spinodal de-
composition using linear Cahn-Hilliard theory. Express your answer in the overall volume
fraction ¢g for which we perform the quench and the interaction parameter y.

(c) Derive an expression for the fastest growing mode ¢, in terms of the y parameter. Sketch
g« as function of y. How do you interpret this result?

Problem 4: Kramers-Kronig relations
In the lecture we derived the Kramers-Kronig relations by analysing the integral

?{dz X(Z), wo € R,
c <~ W

with x(z) the analytical continuation of the Fourier transformed response function x(w). The
closed contour C does not enclose the pole of above integrand at z = wg. Show that the Kramers-
Kronig relations still follow if we choose a contour C’ that encloses the pole on the real axis.



