Problem Set 12 – Statistical Physics B

Problem 1: The Langevin equation and the Einstein relation

Consider the Langevin equation for one-dimensional Brownian motion

$$m\frac{dv}{dt} = -\zeta v(t) + \xi(t), \quad \frac{dx}{dt} = v(t),$$

with m the mass of the Brownian particle and ζ the friction constant. Here, the noise $\xi(t)$ is a stochastic process with zero mean $\langle \xi(t) \rangle = 0$, and

$$\langle \xi(t)\xi(t')\rangle = \Gamma\delta(t-t'),$$

with Γ a constant. Here $\langle ... \rangle$ is defined as the average over a subensemble with the same initial velocity $v_0 = v(0)$ but a different realisation of the noise. Since $\xi(t)$ is a stochastic process, the Langevin equation makes x(t) also a stochastic process whose stochastic properties follow from $\xi(t)$.

- (a) We only specified the first two moments of the noise which suffices for this exercise. In general, we assume that $\xi(t)$ denotes Gaussian white noise. What does this condition imply for $\langle \xi(t_1)\xi(t_2)\xi(t_3)\xi(t_4)\rangle$?
- (b) Determine explicitly v(t) for given v_0 . What is $\langle v(t) \rangle$? Conclude from your expression why the Brownian particle is out of equilibrium.
- (c) Determine the correlation function $\langle v(t)v(t')\rangle$. What is the expression for the equal-time correlator?
- (d) The limit $\lim_{t\to\infty} \langle v^2(t) \rangle$ is well defined. What is the corresponding value? From it, determine the constant Γ and relate your result to the fluctuation-dissipation theorem.
- (e) Determine x(t) x(0) and from it compute the value of the mean-squared displacement $\langle [x(t) x(0)]^2 \rangle$.
- (f) Show that the particle for small enough times undergoes ballistic movement, whereas for long times the motion is diffusive. What is the relation between the diffusion constant D and ζ ? This is called the Einstein relation. What would the result be in three spatial dimensions?
- (g) Determine the correlators $\langle v(t)\xi(t)\rangle$ and $\langle x(t)\xi(t)\rangle$.

Problem 2: Driven damped harmonic oscillator

Consider the equation of motion of a damped harmonic oscillator in the presence of a driving force f(t),

$$m\ddot{x}(t) + \gamma \dot{x}(t) + m\omega_0^2 x(t) = f(t),$$

with m the mass, γ the friction constant, and ω_0 the (undamped) angular frequency of the oscillator.

(a) The equilibrium position is given for x = 0, which allows us to define the response function as

$$x(t) = \int_{-\infty}^{\infty} dt' \, \chi(t - t') f(t')$$

Compute $\tilde{\chi}(\omega)$. How big is the error here within the linear-response approximation?

- (b) Determine $\tilde{\chi}'(\omega)$ and $\tilde{\chi}''(\omega)$. What symmetry properties are satisfied by $\chi'(\omega)$ and $\chi''(\omega)$? Plot these functions in the underdamped and overdamped regime for representative values of the parameters. What happens for $\gamma \to 0$?
- (c) Consider the analytical continuation $\tilde{\chi}(z)$. From its pole structure, show that $\chi(t)$ satisfies causality both in the underdamped and the overdamped regime.
- (d) Determine $\chi(t)$ and sketch this function for representative parameter values.
- (e) Consider harmonic driving, $f(t) = f_0 \cos(\Omega t)$. Computed $\bar{P}(t)$, the dissipated power averaged over a *full* cycle, and show that only $\tilde{\chi}''(\omega)$ contributes.
- (f) Show that the explicit forms of $\tilde{\chi}'(\omega)$ and $\tilde{\chi}''(\omega)$ found in (b) satisfy the Kramers-Kronig relations.

Problem 3: Spinodal decomposition

Consider the Flory-type free energy

$$\beta a^{3} \mathcal{F}[\phi] = \int d\mathbf{r} \left\{ \kappa |\nabla \phi(\mathbf{r})|^{2} + \phi(\mathbf{r}) \ln \phi(\mathbf{r}) + [1 - \phi(\mathbf{r})] \ln[1 - \phi(\mathbf{r})] + \chi \phi(\mathbf{r})[1 - \phi(\mathbf{r})] \right\},$$

with a an (irrelevant) length scale parameter, κ a stiffness parameter, $\phi(\mathbf{r})$ a local volume fraction, and χ an energetic parameter. It would be useful to have a look at problem set 5 before doing this exercise.

- (a) Explain in words how you would derive such a free energy from first principles and what kind of approximations you need to employ.
- (b) Determine within this model an expression for the growth factor R(q) for spinodal decomposition using linear Cahn-Hilliard theory. Express your answer in the overall volume fraction ϕ_0 for which we perform the quench and the interaction parameter χ .
- (c) Derive an expression for the fastest growing mode q_* in terms of the χ parameter. Sketch q_* as function of χ . How do you interpret this result?

Problem 4: Kramers-Kronig relations

In the lecture we derived the Kramers-Kronig relations by analysing the integral

$$\oint_{\mathcal{C}} dz \, \frac{\tilde{\chi}(z)}{z - \omega_0}, \quad \omega_0 \in \mathbb{R},$$

with $\tilde{\chi}(z)$ the analytical continuation of the Fourier transformed response function $\tilde{\chi}(\omega)$. The closed contour \mathcal{C} does not enclose the pole of above integrand at $z = \omega_0$. Show that the Kramers-Kronig relations still follow if we choose a contour \mathcal{C}' that encloses the pole on the real axis.